Search for the product you are looking for
Press Enter to search
研发中心

News

Slide down

How to Test the Temperature Recovery Time of a Thermal Shock Chamber

Source:LINPIN Time:2025-03-26 Category:Industry News

If the temperature recovery time falls outside the specified range, it can affect the test results of the thermal shock chamber. To routinely test the temperature recovery time of the equipment, you can follow the steps below.

Process for Testing Recovery Time:

Install the temperature measurement sensor at the designated position in the thermal shock chamber.
Adjust the temperature controls of the low-temperature chamber and high-temperature chamber to the required values.
Allow the chambers to achieve the desired heating and cooling temperatures.

thermal shock chamber
Once the equipment enters the temperature control state, stabilize it for half an hour or according to the product technical requirements, and record the temperature at the measurement points.
Place the test load into the high-temperature chamber and select the appropriate holding time based on relevant standards and product technical conditions.
Set the equipment’s transition time and transfer the test load from the high-temperature chamber to the low-temperature chamber. Observe and record the temperature at the measurement points during this process.
Repeat the same method to transfer the test load from the low-temperature chamber back to the high-temperature chamber, while observing and recording the temperature at the measurement points.
After recording the two scenarios—transferring the test load from the high-temperature chamber to the low-temperature chamber and vice versa—measure the shortest time required for the temperature at the measurement points to return to the state before the test load was placed.
Linpin is a manufacturer of thermal shock chambers. For any questions regarding test equipment, you can consult our technical staff, who will provide tailored solutions based on your needs. The above outlines the main workflow for testing the temperature recovery time of the equipment. Through this explanation, we hope you have gained a deeper understanding of the relevant equipment. Thermal shock chambers are structurally divided into two-chamber and three-chamber types, and the workflow may vary slightly depending on the structure. For more information about the equipment, please visit our company website or call 400-066-2888 to inquire about the relevant parameters.

News Recommendation
With rapid economic growth and continuous technological advancements, the scientific and technological sophistication of temperature & humidity cycling test chambers has been steadily increasing.
Previously, we have discussed many technical aspects of temperature cycling test chambers. Today, we will share methods for detecting leaks in these chambers. Specifically, there are four main approaches to check for leaks.
Why do so many industries rely on salt spray test chambers? Because many manufactured products need to be tested for their resistance to salt spray corrosion. However, relying solely on natural atmospheric conditions for testing could take years or even decades.
An aging test chamber does not refer to a single device but encompasses various testing methods, including xenon lamp aging tests, UV aging tests, high-temperature aging tests, air-exchange aging tests, and salt spray corrosion aging tests.
Analysis of Fault Alarm Principles in Constant Temperature and Humidity Chambers
Product Recommendation